Search results for " energy spectrum"
showing 10 items of 26 documents
All-particle cosmic ray energy spectrum measured with 26 IceTop stations
2012
Astroparticle physics 44, 40 - 58 (2013). doi:10.1016/j.astropartphys.2013.01.016
Searching for New Physics in two-neutrino double beta decay with CUPID
2021
Abstract In the past few years, attention has been drawn to the fact that a precision analysis of two-neutrino double beta decay (2υββ) allows the study of interesting physics cases like the emission of Majoron bosons and possible Lorentz symmetry violation. These processes modify the summed-energy distribution of the two electrons emitted in 2υββ. CUPID is a next-generation experiment aiming to exploit 100Mo-enriched scintillating Li2MoO4 crystals, operating as cryogenic calorimeters. Given the relatively fast half-life of 100Mo 2υββ and the large exposure that can be reached by CUPID, we expect to measure with very high precision the 100Mo 2υββ spectrum shape, reaching great sensitivities…
Measurement of the cosmic ray energy spectrum using hybrid events of the Pierre Auger Observatory
2012
The energy spectrum of ultra-high energy cosmic rays above 10$^{18}$ eV is measured using the hybrid events collected by the Pierre Auger Observatory between November 2005 and September 2010. The large exposure of the Observatory allows the measurement of the main features of the energy spectrum with high statistics. Full Monte Carlo simulations of the extensive air showers (based on the CORSIKA code) and of the hybrid detector response are adopted here as an independent cross check of the standard analysis (Phys. Lett. B 685, 239 (2010)). The dependence on mass composition and other systematic uncertainties are discussed in detail and, in the full Monte Carlo approach, a region of confiden…
Features of the Energy Spectrum of Cosmic Rays above 2.5×10$^{18}$ eV Using the Pierre Auger Observatory
2020
We report a measurement of the energy spectrum of cosmic rays above $2.5{\times} 10^{18}$ eV based on $215,030$ events. New results are presented: at about $1.3{\times} 10^{19}$ eV, the spectral index changes from $2.51 \pm 0.03 \textrm{ (stat.)} \pm 0.05 \textrm{ (sys.)}$ to $3.05 \pm 0.05 \textrm{ (stat.)}\pm 0.10\textrm{ (sys.)}$, evolving to $5.1\pm0.3\textrm{ (stat.)} \pm 0.1\textrm{ (sys.)}$ beyond $5{\times} 10^{19}$ eV, while no significant dependence of spectral features on the declination is seen in the accessible range. These features of the spectrum can be reproduced in models with energy-dependent mass composition. The energy density in cosmic rays above $5{\times} 10^{18}$ eV …
Simultaneous measurement of the muon neutrino charged-current cross section on oxygen and carbon without pions in the final state at T2K
2020
Authors: K. Abe,56 N. Akhlaq,45 R. Akutsu,57 A. Ali,32 C. Alt,11 C. Andreopoulos,54,34 L. Anthony,21 M. Antonova,19 S. Aoki,31 A. Ariga,2 T. Arihara,59 Y. Asada,69 Y. Ashida,32 E. T. Atkin,21 Y. Awataguchi,59 S. Ban,32 M. Barbi,46 G. J. Barker,66 G. Barr,42 D. Barrow,42 M. Batkiewicz-Kwasniak,15 A. Beloshapkin,26 F. Bench,34 V. Berardi,22 L. Berns,58 S. Bhadra,70 S. Bienstock,53 S. Bolognesi,6 T. Bonus,68 B. Bourguille,18 S. B. Boyd,66 A. Bravar,13 D. Bravo Berguño,1 C. Bronner,56 S. Bron,13 A. Bubak,51 M. Buizza Avanzini ,10 T. Campbell,7 S. Cao,16 S. L. Cartwright,50 M. G. Catanesi,22 A. Cervera,19 D. Cherdack,17 N. Chikuma,55 G. Christodoulou,12 M. Cicerchia,24,† J. Coleman,34 G. Collazu…
A glimpse of gluons through deeply virtual compton scattering on the proton
2017
The internal structure of nucleons (protons and neutrons) remains one of the greatest outstanding problems in modern nuclear physics. By scattering high-energy electrons off a proton we are able to resolve its fundamental constituents and probe their momenta and positions. Here we investigate the dynamics of quarks and gluons inside nucleons using deeply virtual Compton scattering (DVCS)—a highly virtual photon scatters off the proton, which subsequently radiates a photon. DVCS interferes with the Bethe-Heitler (BH) process, where the photon is emitted by the electron rather than the proton. We report herein the full determination of the BH-DVCS interference by exploiting the distinct energ…
Cosmic ray composition and energy spectrum from 1–30 PeV using the 40-string configuration of IceTop and IceCube
2012
Astroparticle physics 42, 15 - 32 (2013). doi:10.1016/j.astropartphys.2012.11.003
Size of the dark side of the solar neutrino parameter space
2000
We present an analysis of the MSW neutrino oscillation solutions of the solar neutrino problem in the framework of two-neutrino mixing in the enlarged parameter space $(\ensuremath{\Delta}{m}^{2},{\mathrm{tan}}^{2}\ensuremath{\theta})$ with $\ensuremath{\theta}\ensuremath{\in}(0,\ensuremath{\pi}/2).$ Recently, it was pointed out that the allowed region of parameters from a fit to the measured total rates can extend to values $\ensuremath{\theta}g~\ensuremath{\pi}/4$ (the so-called ``dark side'') when higher confidence levels are allowed. The purpose of this Rapid Communication is to reanalyze the problem, including all the solar neutrino data available, to discuss the dependence on the stat…
High-resolution spectroscopy of gaseous $^\mathrm{83m}$Kr conversion electrons with the KATRIN experiment
2020
In this work, we present the first spectroscopic measurements of conversion electrons originating from the decay of metastable gaseous $^\mathrm{83m}$Kr with the Karlsruhe Tritium Neutrino (KATRIN) experiment. The results obtained in this calibration measurement represent a major commissioning milestone for the upcoming direct neutrino mass measurement with KATRIN. The successful campaign demonstrates the functionalities of the full KATRIN beamline. The KATRIN main spectrometer's excellent energy resolution of ~ 1 eV made it possible to determine the narrow K-32 and L$_3$-32 conversion electron line widths with an unprecedented precision of ~ 1 %.
Measurement of the energy spectrum of cosmic rays above 10^18 eV using the Pierre Auger Observatory
2010
We report a measurement of the flux of cosmic rays with unprecedented precision and Statistics using the Pierre Auger Observatory Based on fluorescence observations in coincidence with at least one Surface detector we derive a spectrum for energies above 10(18) eV We also update the previously published energy spectrum obtained with the surface detector array The two spectra are combined addressing the systematic uncertainties and, in particular. the influence of the energy resolution on the spectral shape The spectrum can be described by a broken power law E-gamma with index gamma = 3 3 below the ankle which is measured at log(10)(E-ankle/eV) = 18 6 Above the ankle the spectrum is describe…